Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

In the wake of increasing numbers of attacks on radio communication systems, a range of techniques are being deployed to increase the security of these systems. One such technique is radio fingerprinting, in which the transmitter can be identified and authenticated by observing small hardware differences expressed in the signal. Fingerprinting has been explored in particular in the defense of satellite systems, many of which are insecure and cannot be retrofitted with cryptographic security.

In this paper, we evaluate the effectiveness of radio fingerprinting techniques under interference and jamming attacks, usually intended to deny service. By taking a pre-trained fingerprinting model and gathering a new dataset in which different levels of Gaussian noise and tone jamming have been added to the legitimate signal, we assess the attacker power required in order to disrupt the transmitter fingerprint such that it can no longer be recognized. We compare this to Gaussian jamming on the data portion of the signal, obtaining the remarkable result that transmitter fingerprints are still recognizable even in the presence of moderate levels of noise. Through deeper analysis of the results, we conclude that it takes a similar amount of jamming power in order to disrupt the fingerprint as it does to jam the message contents itself, so it is safe to include a fingerprinting system to authenticate satellite communication without opening up the system to easier denial-of-service attacks.

View More Papers

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More