Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

In the wake of increasing numbers of attacks on radio communication systems, a range of techniques are being deployed to increase the security of these systems. One such technique is radio fingerprinting, in which the transmitter can be identified and authenticated by observing small hardware differences expressed in the signal. Fingerprinting has been explored in particular in the defense of satellite systems, many of which are insecure and cannot be retrofitted with cryptographic security.

In this paper, we evaluate the effectiveness of radio fingerprinting techniques under interference and jamming attacks, usually intended to deny service. By taking a pre-trained fingerprinting model and gathering a new dataset in which different levels of Gaussian noise and tone jamming have been added to the legitimate signal, we assess the attacker power required in order to disrupt the transmitter fingerprint such that it can no longer be recognized. We compare this to Gaussian jamming on the data portion of the signal, obtaining the remarkable result that transmitter fingerprints are still recognizable even in the presence of moderate levels of noise. Through deeper analysis of the results, we conclude that it takes a similar amount of jamming power in order to disrupt the fingerprint as it does to jam the message contents itself, so it is safe to include a fingerprinting system to authenticate satellite communication without opening up the system to easier denial-of-service attacks.

View More Papers

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More