Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

NMFTA Best Short Paper Award Winner ($200 cash prize)!

Due to the absence of encryption and authentication mechanisms, the Controller Area Network (CAN) protocol, widely employed in in-vehicle networks, is susceptible to various cyber attacks. In safeguarding in-vehicle networks against cyber threats, numerous Machine Learning-based (ML) and Deep Learning-based (DL) anomaly detection methods have been proposed, demonstrating high accuracy and proficiency in capturing intricate data patterns. However, the majority of these methods are supervised and heavily reliant on labeled training datasets with known attack types, posing limitations in real-world scenarios where acquiring labeled attack data is challenging. In this paper, we present HistCAN, a lightweight and self-supervised Intrusion Detection System (IDS) designed to confront cyber attacks using solely benign training data. HistCAN employs a hybrid encoder capable of simultaneously learning spatial and temporal features of the input data, exhibiting robust patterncapturing capabilities with a relatively compact parameter set. Additionally, a historical information fusion module is integrated into HistCAN, facilitating the capture of long-term dependencies and trends within the CAN ID series. Extensive experimental results demonstrate that HistCAN generally outperforms the compared baseline methods, achieving a high F1 score of 0.9954 in a purely self-supervised manner while satisfying real-time requirements.

View More Papers

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

The Advantages of Distributed TCAM Firewalls in Automotive Real-Time...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Read More