Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Attackers have found numerous vulnerabilities in the Electronic Control Units (ECUs) of modern vehicles, enabling them to stop the car, control its brakes, and take other potentially disruptive actions. Many of these attacks were possible because the vehicles had insecure In-Vehicle Networks (IVNs), where ECUs could send any message to each other. For example, an attacker who compromised an infotainment ECU might be able to send a braking message to a wheel. In this work, we introduce a scheme based on distributed firewalls to block these unauthorized messages according to a set “security policy” defining what transmissions each ECU should be able to send and receive. We leverage the topology of new switched, zonal networks to authenticate messages without cryptography, using Ternary Content Addressable Memory (TCAMs) to enforce the policy at wire-speed. Crucially, our approach minimizes the security burden on edge ECUs and places control in a set of hardened zonal gateways. Through an OMNeT++ simulation of a zonal IVN, we demonstrate that our scheme has much lower overhead than modern cryptography-based approaches and allows for realtime, low-latency (​<0.1 ms) traffic.

View More Papers

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More

Enhance Stealthiness and Transferability of Adversarial Attacks with Class...

Hui Xia (Ocean University of China), Rui Zhang (Ocean University of China), Zi Kang (Ocean University of China), Shuliang Jiang (Ocean University of China), Shuo Xu (Ocean University of China)

Read More