Sharika Kumar (The Ohio State University), Imtiaz Karim, Elisa Bertino (Purdue University), Anish Arora (Ohio State University)

Trucks play a critical role in today’s transportation system, where minor disruptions can result in a major social impact. Intra Medium and Heavy Duty (MHD) communications broadly adopt SAE-J1939 recommended practices that utilize Name Management Protocol (NMP) to associate and manage source addresses with primary functions of controller applications. This paper exposes 19 vulnerabilities in the NMP, uses them to invent various logical attacks, in some cases leveraging and in all cases validating with formal methods, and discusses their impacts. These attacks can–➀ stealthily deny vehicle start-up by pre-playing recorded claims in monotonically descending order; ➁ successfully restrain critical vehicular device participation and institute a dead beef attack, causing reflash failure by performing a replay attack; ➂ cause stealthy address exhaustion, Thakaavath–exhaustion in Sanskrit, which rejects an address-capable controller application from network engagement by exhausting the usable address space via pre-playing claims in monotonically descending order; ➃ poison the controller application’s internally maintained source address-function association table after bypassing the imposter detection protection and execute a stealthy SA-NAME Table Poisoning Attack thereby disable radar and Anti Brake System (ABS), as well as obtain retarder braking torque dashboard warnings; ➄ cause Denial of Service (DoS) on claim messages by predicting the delay in an address reclaim and prohibiting the associated device from participating in the SAE-J1939 network; ➅ impersonate a working set master to alter the source addresses of controller applications to execute a Bot-Net attack; ➆ execute birthday attack, a brute-force collision attack to command an invalid or existing name, thereby causing undesired vehicle behavior. The impact of these attacks is validated by demonstrations on real trucks in operation in a practical setting and on bench setups with a real engine controller connected to a CAN bus.

View More Papers

Programmer's Perception of Sensitive Information in Code

Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More