Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Connected Vehicle (CV) and Connected and Autonomous Vehicle (CAV) technologies can greatly improve traffic efficiency and safety. Data spoofing attack is one major threat to CVs and CAVs, since abnormal data (e.g., falsified trajectories) may influence vehicle navigation and deteriorate CAV/CV-based applications. In this work, we aim to design a generic anomaly detection model which can be used to identify abnormal trajectories from both known and unknown data spoofing attacks. First, the attack behaviors of two representative known attacks are modeled. Then, Using driving features derived from transportation and vehicle domain knowledge, an anomaly detection framework is proposed. The framework combines a feature extractor and an anomaly classifier trained with known attack trajectories and can be applied to identify falsified trajectories generated by various attacks. In the numerical experiment, a highway segment with a signalized intersection is built in the V2X Application Spoofing Platform (VASP). To evaluate the generality of the proposed anomaly detection algorithm, we further tested the proposed model with several unknown attacks provided in VASP. The results indicate that the proposed model achieves high accuracy in detecting falsified attack trajectories from both known and unknown attacks.

View More Papers

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More

Eavesdropping on Black-box Mobile Devices via Audio Amplifier's EMR

Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College…

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More