Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Connected Vehicle (CV) and Connected and Autonomous Vehicle (CAV) technologies can greatly improve traffic efficiency and safety. Data spoofing attack is one major threat to CVs and CAVs, since abnormal data (e.g., falsified trajectories) may influence vehicle navigation and deteriorate CAV/CV-based applications. In this work, we aim to design a generic anomaly detection model which can be used to identify abnormal trajectories from both known and unknown data spoofing attacks. First, the attack behaviors of two representative known attacks are modeled. Then, Using driving features derived from transportation and vehicle domain knowledge, an anomaly detection framework is proposed. The framework combines a feature extractor and an anomaly classifier trained with known attack trajectories and can be applied to identify falsified trajectories generated by various attacks. In the numerical experiment, a highway segment with a signalized intersection is built in the V2X Application Spoofing Platform (VASP). To evaluate the generality of the proposed anomaly detection algorithm, we further tested the proposed model with several unknown attacks provided in VASP. The results indicate that the proposed model achieves high accuracy in detecting falsified attack trajectories from both known and unknown attacks.

View More Papers

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

Secret-Shared Shuffle with Malicious Security

Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More