Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Software supply chain attacks are a major concern and need to be addressed by every organization, including automakers. While there are many effective technologies in both the software delivery and broader software supply chain security space, combining these technologies presents challenges specific to automotive applications. We explore the trust boundaries between the software supply chain and software delivery systems to determine where verification of software supply chain metadata should occur, how to establish a root of trust, and how supply chain policy can be distributed. Using this exploration, we design Scudo, a secure combination of software over the air and software supply chain security technologies. We show that adding full verification of software supply chain metadata on-vehicle is not only inefficient, but is also largely unnecessary for security with multiple points of repository-side verification.

In addition, this paper describes a secure instantiation of Scudo, which integrates Uptane, a state of the art software update security solution, and in-toto, a comprehensive supply chain security framework. A practical deployment has shown that Scudo provides robust software supply chain protections. The client side power and processing costs are negligible, with the updated metadata comprising 0.504% of the total update transmission. The client side verification adds 0.21 seconds to the total update flow. This demonstrates that Scudo is easy to deploy in ways that can efficiently and effectively catch software supply chain attacks.

View More Papers

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

Towards Automated Regulation Analysis for Effective Privacy Compliance

Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Read More

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More