Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Millions of lives are lost due to road accidents each year, emphasizing the importance of improving driver safety measures. In addition, physical vehicle security is a persistent challenge exacerbated by the growing interconnectivity of vehicles, allowing adversaries to engage in vehicle theft and compromising driver privacy. The integration of advanced sensors with internet connectivity has ushered in the era of intelligent transportation systems (ITS), enabling vehicles to generate abundant data that facilitates diverse vehicular applications. These data can also provide insights into driver behavior, enabling effective driver monitoring to support safety and security. In this paper, we propose AutoWatch, a graph-based approach for modeling the behavior of drivers, verifying the identity of the driver, and detecting unsafe driving maneuvers. Our evaluation shows that AutoWatch can improve driver identification accuracy by up to 22% and driving maneuver classification by up to 5.7% compared to baseline techniques.

View More Papers

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More