Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Human trust is critical for the adoption and continued use of autonomous vehicles (AVs). Experiencing vehicle failures that stem from security threats to underlying technologies that enable autonomous driving, can significantly degrade drivers’ trust in AVs. It is crucial to understand and measure how security threats to AVs impact human trust. To this end, we conducted a driving simulator study with forty participants who underwent three drives including one that had simulated cybersecurity attacks. We hypothesize drivers’ trust in the vehicle is reflected through drivers’ body posture, foot movement, and engagement with vehicle controls during the drive. To test this hypothesis, we extracted body posture features from each frame in the video recordings, computed skeletal angles, and performed k-means clustering on these values to classify drivers’ foot positions. In this paper, we present an algorithmic pipeline for automatic analysis of body posture and objective measurement of trust that could be used for building AVs capable of trust calibration after security attack events.

View More Papers

CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu (Zhejiang University), Yuan Sun (Zhejiang University), Jiani Liu (Zhejiang University), Yushi Cheng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Beyond the Bytes: Understanding the Limitations of Intrinsic Binary...

Peter Lafosse (Owner and Co-Founder of Vector 35 Inc.)

Read More

IDA: Hybrid Attestation with Support for Interrupts and TOCTOU

Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Read More

GPS Spoofing Attack Detection on Intersection Movement Assist using...

Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Read More