Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Physical adversarial objects-evasion attacks pose a safety concern for automated driving systems (ADS) and are a significant obstacle to their widespread adoption. To enhance the ability of ADS to address such concerns, we aim to propose a human-AI collaboration framework to bring human in the loop to mitigate the attacks. In this WIP work, we investigate the performance of two object detectors in the YOLO-series (YOLOv5 and YOLOv8) against three physical adversarial object-evasion attacks across different driving contexts in the CARLA simulator. Using static images, we found that YOLOv8 generally outperformed YOLOv5 in attack detection but remained susceptible to certain attacks in specific contexts. Moreover, the study results showed that none of the attacks had achieved a high attack success rate in dynamic tests when system-level features were considered. Nevertheless, such detection results varied across different locations for each attack. Altogether, these results suggest that perception in autonomous driving, the same as human perception in manual driving, might also be context-dependent. Moreover, our results revealed object detection failures at a braking distance anticipated by human drivers, suggesting a necessity to involve human drivers in future evaluation processes.

View More Papers

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More