Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

The Controller Area Network (CAN Bus) has emerged as the de facto standard for in-vehicle communication. However, the CAN bus lacks security features, such as encryption and authentication, making it vulnerable to cyberattacks. In response, the current literature has prioritized the development of Intrusion Detection Systems (IDSs). Nevertheless, the progress of IDS research encounters significant obstacles due to the absence of high-quality, publicly available real CAN data, especially data featuring realistic, verified attacks. This scarcity primarily arises from the substantial cost and associated risks involved in generating real attack data on moving vehicles. Addressing this challenge, this paper introduces a novel CAN bus attack dataset collected from a modern automobile equipped with autonomous driving capabilities, operating under real-world driving conditions. The dataset includes 17 hours of benign data, covering a wide range of scenarios, crucial for training IDSs. Additionally, it comprises 26 physically verified real injection attacks, including Denial-of-Service (DoS), fuzzing, replay, and spoofing, targeting 13 CAN IDs. Furthermore, the dataset encompasses 10 simulated masquerade and suspension attacks, offering 2 hours and 54 minutes of attack data. This comprehensive dataset facilitates rigorous testing and evaluation of various IDSs against a diverse array of realistic attacks, contributing to the enhancement of in-vehicle security.

View More Papers

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

Read More

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More