Panos Kampanakis and Will Childs-Klein (AWS)

It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s post-quantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3 connections which carry sizable amounts of data. Intuitively, the introduction of an extra 10KB of ML-KEM and ML-DSA exchanges in the connection negotiation will inflate the connection establishment time proportionally more than it will increase the total connection time of a Web connection carrying 200KB of data. In this work, we quantify the impact of ML-KEM and ML-DSA on typical TLS 1.3 connections which transfer a few hundreds of KB from the server to the client. We study the slowdown in the time-to-last-byte of post-quantum connections under normal network conditions and in more unstable environments with high packet delay variability and loss probabilities. We show that the impact of ML-KEM and ML-DSA on the TLS 1.3 time-to-last-byte under stable network conditions is lower than the impact on the time-to-first-byte and diminishes as the transferred data increases. The time-to-last-byte increase stays below 5% for high-bandwidth, stable networks. It goes from 32% increase of the time-to-first-byte to under 15% increase of the time-to-last-byte when transferring 50KiB of data or more under low-bandwidth, stable network conditions. Even when congestion control affects connection establishment, the additional slowdown drops below 10% as the connection data increases to 200KiB. We also show that connections in lossy or volatile networks could see higher impact from post-quantum handshakes, but these connections’ time-to-last-byte degradation still drops as the transferred data increases. Finally, we show that such connections are already significantly slow and volatile regardless of the TLS handshake.

View More Papers

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More