Panos Kampanakis and Will Childs-Klein (AWS)

It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s post-quantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3 connections which carry sizable amounts of data. Intuitively, the introduction of an extra 10KB of ML-KEM and ML-DSA exchanges in the connection negotiation will inflate the connection establishment time proportionally more than it will increase the total connection time of a Web connection carrying 200KB of data. In this work, we quantify the impact of ML-KEM and ML-DSA on typical TLS 1.3 connections which transfer a few hundreds of KB from the server to the client. We study the slowdown in the time-to-last-byte of post-quantum connections under normal network conditions and in more unstable environments with high packet delay variability and loss probabilities. We show that the impact of ML-KEM and ML-DSA on the TLS 1.3 time-to-last-byte under stable network conditions is lower than the impact on the time-to-first-byte and diminishes as the transferred data increases. The time-to-last-byte increase stays below 5% for high-bandwidth, stable networks. It goes from 32% increase of the time-to-first-byte to under 15% increase of the time-to-last-byte when transferring 50KiB of data or more under low-bandwidth, stable network conditions. Even when congestion control affects connection establishment, the additional slowdown drops below 10% as the connection data increases to 200KiB. We also show that connections in lossy or volatile networks could see higher impact from post-quantum handshakes, but these connections’ time-to-last-byte degradation still drops as the transferred data increases. Finally, we show that such connections are already significantly slow and volatile regardless of the TLS handshake.

View More Papers

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More

Front-running Attack in Sharded Blockchains and Fair Cross-shard Consensus

Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More