Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

—Graphics processing units (GPUs) on modern computers are susceptible to electromagnetic (EM) side-channel attacks that can leak sensitive information without physical access to the target device. Website fingerprinting through these EM emanations poses a significant privacy threat, capable of revealing user activities from a distance. This paper introduces EMMasker, a novel software-based solution designed to mitigate such attacks by obfuscating the EM signals associated with web activity. EMMasker operates by generating rendering noise within the GPU using WebGL shaders, thereby disrupting the patterns of EM signals and confounding any attempts at identifying user online activities. Our approach strikes a balance between the effectiveness of obfuscation and system efficiency, ensuring minimal impact on GPU performance and user browsing experience. Our evaluation shows that EMMasker can significantly reduce the accuracy of state-of-the-art EM website fingerprinting attacks from average accuracy from 81.03% to 22.56%, without imposing a high resource overhead. Our results highlight the potential of EMMasker as a practical countermeasure against EM side-channel website fingerprinting attacks, enhancing privacy and security for web users.

View More Papers

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More