Rei Yamagishi, Shinya Sasa, and Shota Fujii (Hitachi, Ltd.)

Codes automatically generated by large-scale language models are expected to be used in software development. A previous study verified the security of 21 types of code generated by ChatGPT and found that ChatGPT sometimes generates vulnerable code. On the other hand, although ChatGPT produces different output depending on the input language, the effect on the security of the generated code is not clear. Thus, there is concern that non-native English-speaking developers may generate insecure code or be forced to bear unnecessary burdens. To investigate the effect of language differences on code security, we instructed ChatGPT to generate code in English and Japanese, each with the same content, and generated a total of 450 codes under six different conditions. Our analysis showed that insecure codes were generated in both English and Japanese, but in most cases they were independent of the input language. In addition, the results of validating the same content in different programming languages suggested that the security of the code tends to depend on the security and usability of the API provided by the programming language of the output.

View More Papers

LMSanitator: Defending Prompt-Tuning Against Task-Agnostic Backdoors

Chengkun Wei (Zhejiang University), Wenlong Meng (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University), Min Chen (CISPA Helmholtz Center for Information Security), Minghu Zhao (Zhejiang University), Wenjing Fang (Ant Group), Lei Wang (Ant Group), Zihui Zhang (Zhejiang University), Wenzhi Chen (Zhejiang University)

Read More

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on...

Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

Read More

SURGEON: Performant, Flexible and Accurate Re-Hosting via Transplantation

Florian Hofhammer (EPFL), Marcel Busch (EPFL), Qinying Wang (EPFL and Zhejiang University), Manuel Egele (Boston University), Mathias Payer (EPFL)

Read More