Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Object Security for Constrained RESTful Environments (OSCORE) is an end-to-end security solution for the Constrained Application Protocol (CoAP), which, in turn, is a lightweight application layer protocol for the Internet of things (IoT). The recently standardized Echo option allows OSCORE servers to check if a request was created recently. Previously, OSCORE only offered a counter-based replay protection, which is why delayed OSCORE requests were accepted as fresh. However, the Echo-based replay protection entails an additional round trip, thereby prolonging delays, increasing communication overhead, and deteriorating reliability. Moreover, OSCORE remains vulnerable to a denial-of-sleep attack. In this paper, we propose a version of OSCORE with a revised replay protection, namely OSCORE next-generation (OSCORE-NG). OSCORENG fixes OSCORE’s denial-of-sleep vulnerability and provides freshness guarantees that surpass those of the Echo-based replay protection, while dispensing with an additional round trip. Furthermore, in long-running sessions, OSCORE-NG incurs even less communication overhead than OSCORE’s counter-based replay protection. OSCORE-NG’s approach is to entangle timestamps in nonces. Except during synchronization, CoAP nodes truncate these timestamps in outgoing OSCORE-NG messages. Receivers fail to restore a timestamp if and only if an OSCORE-NG message is delayed by more than 7.848s in our implementation by default. In effect, older OSCORE-NG messages get rejected.

View More Papers

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More