Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Modern technology is advancing on many different levels, and the battlefield is no exception. India has 15000 km of lengthy land borders shared with many other neighboring countries, and only 5 of the 29 states in India do not have any shared international borders or coastlines. Wire fences and conventional sensor-based systems are used to protect terrestrial borders. Wire fences, being the only line of defense against intrusions at most unmanned borders, result in frequent cases of unreported incursion, smuggling, and human trafficking. Typically, intruders cut the fence to gain access to Indian land, and sensor-based systems are prone to false alarms due to animal movements. We propose combining the intelligence of Tiny Machine Learning (TinyML) with the communication capability of IoT to make borders safer and intrusion more challenging. To learn the typical fence movements from natural causes, we use TinyML. Our learning technique is created explicitly to differentiate between regular fence movement and suspicious fence disturbance. The system is efficient enough to detect metal fence cuts and trespassing carefully. With the aid of online learning environments, the sophisticated TinyML microcontroller’s built-in accelerometer can differentiate between different movement patterns. To identify the most effective defense against sensor-level attacks, we conducted tests to gauge the tolerance levels of conventional microcontroller sensor systems against TinyML-powered microcontrollers when exposed to Electromagnetic Pulse (EMP) based sensor hacking attempts. To the best of our knowledge, this is the first research conducted for the Identification of the best suite sensor system for high-precision Internet of Battlefield Things (IoBT) applications. During the real-time model test, the system is found to be 95.4% accurate and readily deployable on TinyML microcontrollers.

View More Papers

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Facilitating Non-Intrusive In-Vivo Firmware Testing with Stateless Instrumentation

Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Read More

HEIR: A Unified Representation for Cross-Scheme Compilation of Fully...

Song Bian (Beihang University), Zian Zhao (Beihang University), Zhou Zhang (Beihang University), Ran Mao (Beihang University), Kohei Suenaga (Kyoto University), Yier Jin (University of Science and Technology of China), Zhenyu Guan (Beihang University), Jianwei Liu (Beihang University)

Read More