Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

QR codes, designed for convenient access to links, have recently been appropriated as phishing attack vectors. As this type of phishing is relatively and many aspects of the threat in real conditions are unknown, we conducted a study in naturalistic settings (n=42) to explore how people behave around QR codes that might contain phishing links. We found that 28 (67%) of our participants opened the link embedded in the QR code without inspecting the URL for potential phishing cues. As a pretext, we used a poster that invited people to scan a QR code and contribute to a humanitarian aid. The choice of a pretext was persuasive enough that 22 (52%) of our participants indicated that it was the main reason why they scanned the QR code and accessed the embedded link in the first place. We used three link variants to test if people are able to spot a potential phishing threat associated with the poster’s QR code (every participant scanned only one variant). In the variants where the link appeared legitimate or it was obfuscated by a link shortening service, only two out of 26 participants (8%) abandoned the URL when they saw the preview in the QR code scanner app. In the variant when the link explicitly contained the word “phish” in the domain name, this ratio rose to 7 out of 16 participants (44%). We use our findings to propose usable security interventions in QR code scanner apps intended to warn users about potentially phishing links.

View More Papers

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More