Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Voice-controlled devices or their software component, known as voice personal assistant (VPA), offer technological advancements that improve user experience. However, they come with privacy concerns such as unintended recording of the user’s private conversations. This data could potentially be stolen by adversaries or shared with third parties. Therefore, users need to be aware of these and other similar potential privacy risks presented by VPAs. In this paper, we first study how VPA users monitor their voice interaction recorded by their VPAs and their expectations via an online survey of 100 users. We find that even though users were aware of the VPAs holding recordings of them, they initially thought reviewing the recordings was unnecessary. However, they were surprised that there were unintended recordings and that they could review the recordings. When presented with what types of unintended recordings might happen, more users wanted the option to review their interaction history. This indicates the importance of data transparency. We then build a browser extension that helps users monitor their voice interaction history and notifies users of unintended conversations recorded by their voice assistants. Our tool experiments with notifications using smart light devices in addition to the traditional push notification approach. With our tool, we then interview 10 users to evaluate the usability and further understand users’ perceptions of such unintended recordings. Our results show that unintended recordings could be common in the wild and there is a need for a tool to help manage the voice interaction recordings with VPAs. Smart light notification is potentially a useful mechanism that should be adopted in addition to the traditional push notification.

View More Papers

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

Kids, Cats, and Control: Designing Privacy and Security Dashboard...

Jacob Abbott (Indiana University), Jayati Dev (Indiana University), DongInn Kim (Indiana University), Shakthidhar Reddy Gopavaram (Indiana University), Meera Iyer (Indiana University), Shivani Sadam (Indiana University) , Shirang Mare (Western Washington University), Tatiana Ringenberg (Purdue University), Vafa Andalibi (Indiana University), and L. Jean Camp(Indiana University)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More