Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Telephone carriers and third-party developers have created technical solutions to detect and notify consumers of spam calls. The goal of this technology is to help users make decisions about incoming calls and reduce the negative effects of spam calls on finances and daily life. Although useful, this technology has varying accuracy due to technical limitations. In this study, we conduct design interviews, a call response diary study, and an MTurk survey (N=143) to explore the relationship between warning accuracy and callee decision-making for incoming calls. Our results suggest that previous call experience can lead to incomplete mental models of how Caller ID works. Additionally, we find that false alarms and missed detection do not impact call response but can influence user expectations of the call. Since adversaries can use mismatched expectations to their advantage, we recommend using warning design characteristics that align with user expectations under detection accuracy constraints.

View More Papers

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More