Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Large language models (LLM) are perceived to offer promising  potentials for automating security tasks, such as those found in security operation centers (SOCs). As a first step towards evaluating this perceived potential, we investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code. We hypothesize that an LLM-based AI agent can be improved over time for a specific security task as human operators interact with it. Such improvement can be made, as a first step, by engineering prompts fed to the LLM based on the responses produced, to include relevant contexts and structures so that the model provides more accurate results. Such engineering efforts become sustainable if the prompts that are engineered to produce better results on current tasks, also produce better results on future unknown tasks. To examine this hypothesis, we utilize the OWASP Benchmark Project 1.2 which contains 2,740 hand-crafted source code test cases containing various types of vulnerabilities. We divide the test cases into training and testing data, where we engineer the prompts based on the training data (only), and evaluate the final system on the testing data. We compare the AI agent’s performance on the testing data against the performance of the agent without the prompt engineering. We also compare the AI agent’s results against those from SonarQube, a widely used static code analyzer for security testing. We built and tested multiple versions of the AI agent using different off-the-shelf LLMs – Google’s Gemini-pro, as well as OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo (with both chat completion and assistant APIs). The results show that using LLMs is a viable approach to build an AI agent for software pentesting that can improve through repeated use and prompt engineering.

View More Papers

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More

A Duty to Forget, a Right to be Assured?...

Hongsheng Hu (CSIRO's Data61), Shuo Wang (CSIRO's Data61), Jiamin Chang (University of New South Wales), Haonan Zhong (University of New South Wales), Ruoxi Sun (CSIRO's Data61), Shuang Hao (University of Texas at Dallas), Haojin Zhu (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61)

Read More