Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

This paper presents a method for reduction and aggregation of raw authentication logs into user-experience focused "event logs". The event logs exclude non-interactive authentication data and capture critical aspects of the authentication experience to deliver a distilled representation of an authentication. This method is demonstrated using real data from a university, spanning three full semesters. Event construction is presented along with several examples to demonstrate the utility of event logs in the context of a Security Operations Center (SOC). Authentication success rates are shown to widely vary, with the bottom 5% of users failing more than one third of authentication events. A proactive SOC could utilize such data to assist struggling users. Event logs can also identify persistently locked out users. 2.5% of the population under study was locked out in a given week, indicating that interventions by SOC analysts to reinstate locked-out users could be manageable. A final application of event logs can identify problematic applications with above average authentication failure rates that spike periodically. It also identifies lapsed applications with no successful authentications, which account for over 50% of unique applications in our sample.

View More Papers

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More