Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

The advent of deep learning has brought about vast improvements to computer vision systems and facilitated the development of self-driving vehicles. Nevertheless, these models have been found to be susceptible to adversarial attacks. Of particular importance to the research community are patch attacks, which have been found to be realizable in the physical world. While certifiable defenses against patch attacks have been developed for tasks such as single-label classification, there does not exist a defense for multi-label classification. In this work, we propose such a defense called Multi-Label PatchCleanser, an extension of the current state-of-the-art (SOTA) method for single-label classification. We find that our approach can achieve non-trivial robustness on the MSCOCO 2014 validation dataset while maintaining high clean performance. Additionally, we leverage a key constraint between patch and object locations to develop a novel procedure and improve upon baseline robust performance.

View More Papers

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

Vision: An Exploration of Online Toxic Content Against Refugees

Arjun Arunasalam (Purdue University), Habiba Farrukh (University of California, Irvine), Eliz Tekcan (Purdue University), Z. Berkay Celik (Purdue University)

Read More

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More