Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Developers leverage machine learning (ML) platforms to handle a range of their ML tasks in the cloud, but these use cases have not been deeply considered in the context of confidential computing. Confidential computing’s threat model treats the cloud provider as untrusted, so the user’s data in use (and certainly at rest) must be encrypted and integrity-protected. This host-guest barrier presents new challenges and opportunities in the ML platform space. In particular, we take a glancing look at ML platforms’ pipeline tools, how they currently align with the Confidential Containers project, and what may be needed to bridge several gaps.

View More Papers

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

SOC Service Areas: Identification, Prioritization, and Implementation

Christopher Rodman, Breanna Kraus, Justin Novak (SEI/CERT)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More