Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Developers leverage machine learning (ML) platforms to handle a range of their ML tasks in the cloud, but these use cases have not been deeply considered in the context of confidential computing. Confidential computing’s threat model treats the cloud provider as untrusted, so the user’s data in use (and certainly at rest) must be encrypted and integrity-protected. This host-guest barrier presents new challenges and opportunities in the ML platform space. In particular, we take a glancing look at ML platforms’ pipeline tools, how they currently align with the Confidential Containers project, and what may be needed to bridge several gaps.

View More Papers

WIP: Savvy: Trustworthy Autonomous Vehicles Architecture

Ali Shoker, Rehana Yasmin, Paulo Esteves-Verissimo (Resilient Computing & Cybersecurity Center (RC3), KAUST)

Read More

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

Compensating Removed Frequency Components: Thwarting Voice Spectrum Reduction Attacks

Shu Wang (George Mason University), Kun Sun (George Mason University), Qi Li (Tsinghua University)

Read More

Stacking up the LLM Risks: Applied Machine Learning Security

Dr. Gary McGraw, Berryville Institute of Machine Learning

Read More