The AI-Cybersecurity Nexus - Opportunities, Challenges, and Solutions Artificial Intelligence (AI) is revolutionizing cybersecurity, offering enhanced threat detection, proactive prevention, and streamlined response mechanisms. In this keynote, we will explore how AI is reshaping the cybersecurity landscape, especially IoT security, enabling faster incident resolution, more intuitive security tools, and greater overall efficiency. We will share key insights into what works, what doesn’t, and lessons learned from real-world implementations. However, while AI strengthens cybersecurity, it also introduces new vulnerabilities—adversarial AI, automated cyberattacks, and novel threat vectors that traditional defenses struggle to address. We will examine these emerging risks and the evolving tactics of malicious actors who leverage AI against security systems. Finally, this session will present actionable solutions to mitigate AI-driven threats, including fighting AI with AI, platformization, precision AI, adaptive defense strategies, responsible AI deployment, and the integration of AI with human intelligence to create more resilient security frameworks. Join us as we navigate the AI-cybersecurity nexus and chart a course toward a safer digital future.

Speaker's Biography: Dr. May Wang is the Chief Technology Officer for IoT Security at Palo Alto Networks, where she leads innovation in AI-driven cybersecurity solutions. She is the co-founder of Zingbox, the industry’s first AI-powered IoT security company, which was acquired by Palo Alto Networks in 2019. Before founding Zingbox, Dr. Wang served as a Principal Architect in the Cisco CTO Office. Dr. Wang holds a Ph.D. in Electrical Engineering from Stanford University and has received numerous accolades, including being recognized as the 2023 AI Entrepreneur of the Year by VentureBeat.

View More Papers

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy…

Read More

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More