Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

The decentralized and modular architecture of open radio access networks (O-RAN) enhances flexibility and interoperability but introduces significant challenges in efficiently managing resource allocation. The disaggregation of network functions across distributed unit, centralized unit, and RAN intelligent controller (RIC) creates complexities in coordinating resources across multiple network slices, each with distinct and dynamic quality of service (QoS) requirements. Traditional machine learning (ML) approaches for resource management often rely on extensive offline training, which is impractical in the highly variable and real-time environments of O-RAN systems. This paper presents LLM-xApp, a novel large language model (LLM)-powered xApp framework for adaptive radio resource management in O-RAN systems. The proposed framework is based on intelligently prompting LLM agents to dynamically optimize resource allocation to different network slices. Experimental evaluations are conducted on the OpenAI Cellular (OAIC) platform showcasing significant improvements in average data rates as well as the reliability of the slices, demonstrating the potential of LLMs to enhance real-time decision-making in next-generation wireless networks.

View More Papers

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

Trust or Bust: A Survey of Threats in Decentralized...

Hetvi Shastri (University of Massachusetts Amherst), Akanksha Atrey (Nokia Bell Labs), Andre Beck (Nokia Bell Labs), Nirupama Ravi (Nokia Bell Labs)

Read More

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More