Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

The decentralized and modular architecture of open radio access networks (O-RAN) enhances flexibility and interoperability but introduces significant challenges in efficiently managing resource allocation. The disaggregation of network functions across distributed unit, centralized unit, and RAN intelligent controller (RIC) creates complexities in coordinating resources across multiple network slices, each with distinct and dynamic quality of service (QoS) requirements. Traditional machine learning (ML) approaches for resource management often rely on extensive offline training, which is impractical in the highly variable and real-time environments of O-RAN systems. This paper presents LLM-xApp, a novel large language model (LLM)-powered xApp framework for adaptive radio resource management in O-RAN systems. The proposed framework is based on intelligently prompting LLM agents to dynamically optimize resource allocation to different network slices. Experimental evaluations are conducted on the OpenAI Cellular (OAIC) platform showcasing significant improvements in average data rates as well as the reliability of the slices, demonstrating the potential of LLMs to enhance real-time decision-making in next-generation wireless networks.

View More Papers

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More