Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

The area of security measurability is gaining increased attention, with a wide range of organizations calling for the development of scalable approaches for assessing the security of software systems and infrastructure. In this paper, we present our experience developing Security Signals, a comprehensive system providing security measurability for web services, deployed in a complex application ecosystem of thousands of web services handling traffic from billions of users. The system collects security-relevant information from production HTTP traffic at the reverse proxy layer, utilizing novel concepts such as synthetic signals augmented with additional risk information to provide a holistic view of the security posture of individual services and the broader application ecosystem. This approach to measurability has enabled large-scale security improvements to our services, including prioritized rollouts of security enhancements and the implementation of automated regression monitoring. Furthermore, it has proven valuable for security research and prioritization of defensive work. Security Signals addresses shortcomings of prior web measurability proposals by tracking a comprehensive set of security properties relevant to web applications, and by extracting insights from collected data for use by both security experts and non-experts. We believe the lessons learned from the implementation and use of Security Signals offer valuable insights for practitioners responsible for web service security, potentially inspiring new approaches to web security measurability.

View More Papers

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More