Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Data is a critical resource for technologies such as Large Language Models (LLMs) that are driving significant economic gains. Due to its importance, many different organizations are collecting and analyzing as much data as possible to secure their growth and relevance, leading to non-trivial privacy risks. Among the areas with potential for increased privacy risks are voluntary data-sharing events, when individuals willingly exchange their personal data for some service or item. This often places them in positions where they have inadequate control over what data should be exchanged and how it should be used. To address this power imbalance, we aim to obtain, analyze, and dissect the many different behaviors and needs of both parties involved in such negotiations, namely, the data subjects, i.e., the individuals whose data is being exchanged, and the data requesters, i.e., those who want to acquire the data. As an initial step, we are developing a multi-stage user study to better understand the factors that govern the behavior of both data subjects and requesters while interacting in data exchange negotiations. In addition, we aim to identify the design elements that both parties require so that future privacy-enhancing technologies (PETs) prioritizing privacy negotiation algorithms can be further developed and deployed in practice.

View More Papers

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

CLIBE: Detecting Dynamic Backdoors in Transformer-based NLP Models

Rui Zeng (Zhejiang University), Xi Chen (Zhejiang University), Yuwen Pu (Zhejiang University), Xuhong Zhang (Zhejiang University), Tianyu Du (Zhejiang University), Shouling Ji (Zhejiang University)

Read More

TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents

Chen Gong (University of Vriginia), Kecen Li (Chinese Academy of Sciences), Jin Yao (University of Virginia), Tianhao Wang (University of Virginia)

Read More

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More