Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Data is a critical resource for technologies such as Large Language Models (LLMs) that are driving significant economic gains. Due to its importance, many different organizations are collecting and analyzing as much data as possible to secure their growth and relevance, leading to non-trivial privacy risks. Among the areas with potential for increased privacy risks are voluntary data-sharing events, when individuals willingly exchange their personal data for some service or item. This often places them in positions where they have inadequate control over what data should be exchanged and how it should be used. To address this power imbalance, we aim to obtain, analyze, and dissect the many different behaviors and needs of both parties involved in such negotiations, namely, the data subjects, i.e., the individuals whose data is being exchanged, and the data requesters, i.e., those who want to acquire the data. As an initial step, we are developing a multi-stage user study to better understand the factors that govern the behavior of both data subjects and requesters while interacting in data exchange negotiations. In addition, we aim to identify the design elements that both parties require so that future privacy-enhancing technologies (PETs) prioritizing privacy negotiation algorithms can be further developed and deployed in practice.

View More Papers

Cybercrime Investigators are Users Too! Understanding the Socio-Technical Challenges...

Mariam Nouh (University of Oxford); Jason R. C. Nurse (University of Kent); Helena Webb, Michael Goldsmith (University of Oxford)

Read More

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity...

Shady Mansour (LMU Munich), Pascal Knierim (Universitat Innsbruck), Joseph O’Hagan (University of Glasgow), Florian Alt (University of the Bundeswehr Munich), Florian Mathis (University of Glasgow)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

Translating C To Rust: Lessons from a User Study

Ruishi Li (National University of Singapore), Bo Wang (National University of Singapore), Tianyu Li (National University of Singapore), Prateek Saxena (National University of Singapore), Ashish Kundu (Cisco Research)

Read More