Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Since 2003, CAPTCHAS have been widely used as a barrier against bots, while simultaneously annoying great multitudes of users worldwide. As the use of CAPTCHAS grew, techniques to defeat or bypass them kept improving. In response, CAPTCHAS themselves evolved in terms of sophistication and diversity, becoming increasingly difficult to solve for both bots and humans. Given this long-standing and still-ongoing arms race, it is important to investigate usability, solving performance, and user perceptions of modern CAPTCHAS. In this work, we do so via a large scale (over 3,600 distinct users) 13-month realworld user study and post-study survey. The study, conducted at a large public university, is based on a live account creation and password recovery service with currently prevalent CAPTCHA type: reCAPTCHAv2.

Results show that, with more attempts, users improve in solving checkbox CAPTCHAS. For website developers and user study designers, results indicate that the website context, i.e., whether the service is password recovery or account creation, directly influences (with statistically significant differences) CAPTCHA solving times. We consider the impact of participants’ major and education level, showing that certain majors exhibit better performance, while, in general, education level has a direct impact on solving time. Unsurprisingly, we discover that participants find image CAPTCHAS to be annoying, while checkbox CAPTCHAS are perceived as easy. We also show that, rated via System Usability Scale (SUS), image CAPTCHAS are viewed as “OK”, while checkbox CAPTCHAS are viewed as “good”.

Finally, we also explore the cost and security of reCAPTCHAv2 and conclude that it comes at an immense cost and offers practically no security. Overall, we believe that this study’s results prompt a natural conclusion: reCAPTCHAv2 and similar reCAPTCHA technology should be deprecated.

View More Papers

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Misdirection of Trust: Demystifying the Abuse of Dedicated URL...

Zhibo Zhang (Fudan University), Lei Zhang (Fudan University), Zhangyue Zhang (Fudan University), Geng Hong (Fudan University), Yuan Zhang (Fudan University), Min Yang (Fudan University)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More