Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee, Knoxville)

In this the digital age, parents and children may turn to online security advice to determine how to proceed. In this paper, we examine the advice available to parents and children regarding content filtering and circumvention as found on YouTube and TikTok. In an analysis of 839 videos returned from queries on these topics, we found that half (n=399) provide relevant advice to the target demographic. Our results show that of these videos, roughly three-quarters are accurate, with the remaining one-fourth containing incorrect advice. We find that videos targeting children are both more likely to be incorrect and actionable than videos targeting parents, leaving children at increased risk of taking harmful action. Moreover, we find that while advice videos targeting parents will occasionally discuss the ethics of content filtering and device monitoring (including recommendations to respect children’s autonomy) no such discussion of the ethics or risks of circumventing content filtering is given to children, leaving them unaware of any risks that may be involved with doing so. Our findings suggest that video-based social media has the potential to be an effective medium for propagating security advice and that the public would benefit from security researchers and practitioners engaging more with these platforms, both for the creation of content and of tools designed to help with more effective filtering.

View More Papers

User Attitudes Towards Controls for Ad Interests Estimated On-device...

Florian Lachner, Minzhe Yuan Chen Cheng, Theodore Olsauskas-Warren (Google)

Read More

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More