Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Deep learning, particularly Transformer-based models, has recently gained traction in binary analysis, showing promising outcomes. Despite numerous studies customizing these models for specific applications, the impact of such modifications on performance remains largely unexamined. Our study critically evaluates four custom Transformer models (jTrans, PalmTree, StateFormer, Trex) across various applications, revealing that except for the Masked Language Model (MLM) task, additional pre-training tasks do not significantly enhance learning. Surprisingly, the original BERT model often outperforms these adaptations, indicating that complex modifications and new pre-training tasks may be superfluous. Our findings advocate for focusing on fine-tuning rather than architectural or task-related alterations to improve model performance in binary analysis.

Speaker's Biography: Dr. Heng Yin is a Professor in the Department of Computer Science and Engineering at University of California, Riverside. He obtained his PhD degree from the College of William and Mary in 2009. His research interests lie in computer security, with an emphasis on binary code analysis. His publications appear in top-notch technical conferences and journals, such as IEEE S&P, ACM CCS, USENIX Security, NDSS, ISSTA, ICSE, TSE, TDSC, etc. His research is sponsored by National Science Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), and Office of Naval Research (ONR). In 2011, he received the prestigious NSF Career award. He received Google Security and Privacy Research Award, Amazon Research Award, DSN Distinguished Paper Award, and RAID Best Paper Award.

View More Papers

Siniel: Distributed Privacy-Preserving zkSNARK

Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal…

Read More

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

ScopeVerif: Analyzing the Security of Android’s Scoped Storage via...

Zeyu Lei (Purdue University), Güliz Seray Tuncay (Google), Beatrice Carissa Williem (Purdue University), Z. Berkay Celik (Purdue University), Antonio Bianchi (Purdue University)

Read More