Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Deep learning, particularly Transformer-based models, has recently gained traction in binary analysis, showing promising outcomes. Despite numerous studies customizing these models for specific applications, the impact of such modifications on performance remains largely unexamined. Our study critically evaluates four custom Transformer models (jTrans, PalmTree, StateFormer, Trex) across various applications, revealing that except for the Masked Language Model (MLM) task, additional pre-training tasks do not significantly enhance learning. Surprisingly, the original BERT model often outperforms these adaptations, indicating that complex modifications and new pre-training tasks may be superfluous. Our findings advocate for focusing on fine-tuning rather than architectural or task-related alterations to improve model performance in binary analysis.

Speaker's Biography: Dr. Heng Yin is a Professor in the Department of Computer Science and Engineering at University of California, Riverside. He obtained his PhD degree from the College of William and Mary in 2009. His research interests lie in computer security, with an emphasis on binary code analysis. His publications appear in top-notch technical conferences and journals, such as IEEE S&P, ACM CCS, USENIX Security, NDSS, ISSTA, ICSE, TSE, TDSC, etc. His research is sponsored by National Science Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), and Office of Naval Research (ONR). In 2011, he received the prestigious NSF Career award. He received Google Security and Privacy Research Award, Amazon Research Award, DSN Distinguished Paper Award, and RAID Best Paper Award.

View More Papers

MALintent: Coverage Guided Intent Fuzzing Framework for Android

Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More