Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Robust reinforcement learning has been a challenging problem due to always unknown differences between real and training environment. Existing efforts approached the problem through performing random environmental perturbations in learning process. However, one can not guarantee perturbation is positive. Bad ones might bring failures to reinforcement learning. Therefore, in this paper, we propose to utilize GAN to dynamically generate progressive perturbations at each epoch and realize curricular policy learning. Demo we implemented in unmanned CarRacing game validates the effectiveness.

View More Papers

Processing Dangerous Paths – On Security and Privacy of...

Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More