Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.

View More Papers

WIP: The Feasibility of High-performance Message Authentication in Automotive...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More

DOITRUST: Dissecting On-chain Compromised Internet Domains via Graph Learning

Shuo Wang (CSIRO's Data61 & Cybersecurity CRC, Australia), Mahathir Almashor (CSIRO's Data61 & Cybersecurity CRC, Australia), Alsharif Abuadbba (CSIRO's Data61 & Cybersecurity CRC, Australia), Ruoxi Sun (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Calvin Wang (CSIRO's Data61), Raj Gaire (CSIRO's Data61 & Cybersecurity CRC, Australia), Surya Nepal (CSIRO's Data61 & Cybersecurity CRC, Australia), Seyit Camtepe (CSIRO's…

Read More