Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Cellular basebands play a crucial role in mobile communication. However, it is significantly challenging to assess their security for several reasons. Manual analysis is inevitable because of the obscurity and complexity of baseband firmware; however, such analysis requires repetitive efforts to cover diverse models or versions. Automating the analysis is also non-trivial because the firmware is significantly large and contains numerous functions associated with complex cellular protocols. Therefore, existing approaches on baseband analysis are limited to only a couple of models or versions within a single vendor. In this paper, we propose a novel approach named BaseSpec, which performs a comparative analysis of baseband software and cellular specifications. By leveraging the standardized message structures in the specification, BaseSpec inspects the message structures implemented in the baseband software systematically. It requires a manual yet one-time analysis effort to determine how the message structures are embedded in target firmware. Then, BaseSpec compares the extracted message structures with those in the specification syntactically and semantically, and finally, it reports mismatches. These mismatches indicate the developer mistakes, which break the compliance of the baseband with the specification, or they imply potential vulnerabilities. We evaluated BaseSpec with 18 baseband firmware images of 9 models from one of the top three vendors and found hundreds of mismatches. By analyzing these mismatches, we discovered 9 erroneous cases: 5 functional errors and 4 memory-related vulnerabilities. Notably, two of these are critical remote code execution 0-days. Moreover, we applied BaseSpec to 3 models from another vendor, and BaseSpec found multiple mismatches, two of which led us to discover a buffer overflow bug.

View More Papers

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

Screen Gleaning: Receiving and Interpreting Pixels by Eavesdropping on...

Zhuoran Liu, Léo Weissbart, Dirk Lauret (Radboud University)

Read More

HTTPS-Only: Upgrading all connections to https: in Web Browsers

Christoph Kerschbaumer, Julian Gaibler, Arthur Edelstein (Mozilla Corporation), Thyla van der Merwey (ETH Zurich)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More