Ke Coby Wang (Duke University), Michael K. Reiter (Duke University)

Decoy passwords, or "honeywords," planted in a credential database can alert a site to its breach if ever submitted in a login attempt. To be effective, some honeywords must appear at least as likely to be user-chosen passwords as the real ones, and honeywords must be very difficult to guess without having breached the database, to prevent false breach alarms. These goals have proved elusive, however, for heuristic honeyword generation algorithms. In this paper we explore an alternative strategy in which the defender treats honeyword selection as a Bernoulli process in which each possible password (except the user-chosen one) is selected as a honeyword independently with some fixed probability. We show how Bernoulli honeywords can be integrated into two existing system designs for leveraging honeywords: one based on a honeychecker that stores the secret index of the user-chosen password in the list of account passwords, and another that does not leverage secret state at all. We show that Bernoulli honeywords enable analytic derivation of false breach-detection probabilities irrespective of what information the attacker gathers about the sites' users; that their true and false breach-detection probabilities demonstrate compelling efficacy; and that Bernoulli honeywords can even enable performance improvements in modern honeyword system designs.

View More Papers

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

Architecting Trigger-Action Platforms for Security, Performance and Functionality

Deepak Sirone Jegan (University of Wisconsin-Madison), Michael Swift (University of Wisconsin-Madison), Earlence Fernandes (University of California San Diego)

Read More

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More