Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Overlay is a notable user interface feature in the Android system, which allows an app to draw over other apps' windows. While overlay enhances user experience and allows concurrent app interaction, it has been extensively abused for malicious purposes, such as "tapjacking", leading to so-called overlay attacks. In order to combat this threat, Google introduced a dedicated window flag SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS to protect critical system apps' windows against overlay attacks. Unfortunately, the adequacy of such protection in the Android system remains unstudied, with a noticeable absence of clear usage guidelines.

To bridge the gap, in this paper, we conduct the first systematic study on the unprotected windows of system apps against overlay attacks. We propose a comprehensive guideline and then design and develop a new tool named OverlayChecker to identify the missing protections in Android system apps. To verify the uncovered issues, we also design and create Proof-of-Concept apps. After applying OverlayChecker to 8 commercial Android systems on 4 recently released Android versions, we totally discovered 49 vulnerable system apps' windows. We reported our findings to the mobile vendors, including Google, Samsung, Vivo, Xiaomi, and Honor. At the time of writing, 15 of them have been confirmed. 5 CVEs have been assigned, and 3 of them are rated high severity. We also received bug bounty rewards from these mobile vendors.

View More Papers

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More