Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

IP address blacklists are a useful source of information about repeat attackers. Such information can be used to prioritize which traffic to divert for deeper inspection (e.g., repeat offender traffic), or which traffic to serve first (e.g., traffic from sources that are not blacklisted). But blacklists also suffer from overspecialization – each list is geared towards a specific purpose – and they may be inaccurate due to misclassification or stale information. We propose BLAG, a system that evaluates and aggregates multiple blacklists feeds, producing a more useful, accurate and timely master blacklist, tailored to the specific customer network. BLAG uses a sample of the legitimate sources of the customer network’s inbound traffic to evaluate the accuracy of each blacklist over regions of address space. It then leverages recommendation systems to select the most accurate information to aggregate into its master blacklist. Finally, BLAG identifies portions of the master blacklist that can be expanded into larger address regions (e.g. /24 prefixes) to uncover more malicious addresses with minimum collateral damage. Our evaluation of 157 blacklists of various attack types and three ground-truth datasets shows that BLAG achieves high specificity up to 99%, improves recall by up to 114 times compared to competing approaches, and detects attacks up to 13.7 days faster, which makes it a promising approach for blacklist generation.

View More Papers

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

You Are What You Do: Hunting Stealthy Malware via...

Qi Wang (University of Illinois Urbana-Champaign), Wajih Ul Hassan (University of Illinois Urbana-Champaign), Ding Li (NEC Laboratories America, Inc.), Kangkook Jee (University of Texas at Dallas), Xiao Yu (NEC Laboratories America, Inc.), Kexuan Zou (University Of Illinois Urbana-Champaign), Junghwan Rhee (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Wei Cheng (NEC Laboratories America,…

Read More

Practical Traffic Analysis Attacks on Secure Messaging Applications

Alireza Bahramali (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Ramin Soltani (University of Massachusetts Amherst), Dennis Goeckel (University of Massachusetts Amherst), Don Towsley (University of Massachusetts Amherst)

Read More

When Malware is Packin' Heat; Limits of Machine Learning...

Hojjat Aghakhani (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Francesco Mecca (Università degli Studi di Torino), Martina Lindorfer (TU Wien), Stefano Ortolani (Lastline Inc.), Davide Balzarotti (Eurecom), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara)

Read More