Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Modern Web services provide rich content by accessing resources on user devices, including hardware devices such as cameras, microphones, and GPSs. Web browser vendors have adopted permission mechanisms that achieve appropriate control over access to such resources to protect user privacy. The permission mechanism gives users the ability to grant or deny their browser access to resources for each website. Despite the importance of permission mechanisms in protecting user privacy, previous studies have not been conducted to systematically understand their behavior and implementation. In this study, we developed Permium, a web browser analysis framework that automatically analyzes the behavior of permission mechanisms implemented by various browsers. Using the Permium framework, we systematically studied the behavior of permission mechanisms for 22 major browser implementations running on five different operating systems, including mobile and desktop. We determined that the implementation and behavior of permission mechanisms are fragmented and inconsistent between operating systems, even for the same browser (i.e., Windows Chrome vs. iOS Chrome) and that the implementation inconsistencies can lead to privacy risks. Based on the behavior and implementation inconsistencies of the permission mechanism revealed by our measurement study, we developed two proof-of-concept attacks and evaluated their feasibility. The first attack uses the permission information collected by exploiting the inconsistencies to secretly track the user. The second attack aims to create a situation in which the user cannot correctly determine the origin of the permission request, and the user incorrectly grants permission to a malicious site. Finally, we clarify the technical issues that must be standardized in privacy mechanisms and provide recommendations to OS/browser vendors to mitigate the threats identified in this study.

View More Papers

Drone Security and the Mysterious Case of DJI's DroneID

Nico Schiller (Ruhr-Universität Bochum), Merlin Chlosta (CISPA Helmholtz Center for Information Security), Moritz Schloegel (Ruhr-Universität Bochum), Nils Bars (Ruhr University Bochum), Thorsten Eisenhofer (Ruhr University Bochum), Tobias Scharnowski (Ruhr-University Bochum), Felix Domke (Independent), Lea Schönherr (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information Security)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More