Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Memory safety violations are a significant concern in real-world programs, prompting the development of various mitigation methods. However, existing cost-efficient defenses provide limited protection and can be bypassed by sophisticated attacks, necessitating the combination of multiple defenses. Unfortunately, combining these defenses often results in performance degradation and compatibility issues.

We present CCTAG, a lightweight architecture that simplifies the integration of diverse tag-based defense mechanisms. It offers configurable tag verification and modification rules to build various security policies, acting as basic protection primitives for defense applications. Its policy-centric mask design boosts flexibility and prevents conflicts, enabling multiple defense mechanisms to run concurrently. Our RISC-V prototype on an FPGA board demonstrates that CCTAG incurs minimal hardware overhead, with a slight increase in LUTs (6.77%) and FFs (8.02%). With combined protections including ret address protection, code pointer and vtable pointer integrity, and memory coloring, the SPEC CPU CINT2006 and CINT2017 benchmarks report low runtime overheads of 4.71% and 7.93%, respectively. Security assessments with CVEs covering major memory safety vulnerabilities and various exploitation techniques verify CCTAG’s effectiveness in mitigating real-world threats.

View More Papers

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More

Privacy-Enhancing Technologies Against Physical-Layer and Link-Layer Device Tracking: Trends,...

Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Read More