Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Cochlear implants (CIs) allow deaf and hard-of-hearing individuals to use audio devices, such as phones or voice assistants. However, the advent of increasingly sophisticated synthetic audio (i.e., deepfakes) potentially threatens these users. Yet, this population's susceptibility to such attacks is unclear. In this paper, we perform the first study of the impact of audio deepfakes on CI populations. We examine the use of CI-simulated audio within deepfake detectors. Based on these results, we conduct a user study with 35 CI users and 87 hearing persons (HPs) to determine differences in how CI users perceive deepfake audio. We show that CI users can, similarly to HPs, identify text-to-speech generated deepfakes. Yet, they perform substantially worse for voice conversion deepfake generation algorithms, achieving only 67% correct audio classification. We also evaluate how detection models trained on a CI-simulated audio compare to CI users and investigate if they can effectively act as proxies for CI users. This work begins an investigation into the intersection between adversarial audio and CI users to identify and mitigate threats against this marginalized group.

View More Papers

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

Mens Sana In Corpore Sano: Sound Firmware Corpora for...

René Helmke (Fraunhofer FKIE), Elmar Padilla (Fraunhofer FKIE, Germany), Nils Aschenbruck (University of Osnabrück)

Read More

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More