Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Coconut is a novel selective disclosure credential scheme supporting distributed threshold issuance, public and private attributes, re-randomization, and multiple unlinkable selective attribute revelations. Coconut integrates with Blockchains to ensure confidentiality, authenticity and availability even when a subset of credential issuing authorities are malicious or offline. We implement and evaluate a generic Coconut smart contract library for Chainspace and Ethereum; and present three applications related to anonymous payments, electronic petitions, and distribution of proxies for censorship resistance.
Coconut uses short and computationally efficient credentials, and our evaluation shows that most Coconut cryptographic primitives take just a few milliseconds on average, with verification taking the longest time (10 milliseconds).

View More Papers

Life after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice...

Yangyong Zhang (Texas A&M University), Lei Xu (Texas A&M University), Abner Mendoza (Texas A&M University), Guangliang Yang (Texas A&M University), Phakpoom Chinprutthiwong (Texas A&M University), Guofei Gu (Texas A&M University)

Read More

DNS Cache-Based User Tracking

Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

Read More

Understanding Open Ports in Android Applications: Discovery, Diagnosis, and...

Daoyuan Wu (Singapore Management University), Debin Gao (Singapore Management University), Rocky K. C. Chang (The Hong Kong Polytechnic University), En He (China Electronic Technology Cyber Security Co., Ltd.), Eric K. T. Cheng (The Hong Kong Polytechnic University), Robert H. Deng (Singapore Management University)

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More