Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

We present a novel approach to developing programmable logic controller (PLC) malware that proves to be more flexible, resilient, and impactful than current strategies. While previous attacks on PLCs infect either the control logic or firmware portions of PLC computation, our proposed malware exclusively infects the web application hosted by the emerging embedded web servers within the PLCs. This strategy allows the malware to stealthily attack the underlying real-world machinery using the legitimate web application program interfaces (APIs) exposed by the admin portal website. Such attacks include falsifying sensor readings, disabling safety alarms, and manipulating physical actuators. Furthermore, this approach has significant advantages over existing PLC malware techniques (control logic and firmware) such as platform independence, ease-of-deployment, and higher levels of persistence. Our research shows that the emergence of web technology in industrial control environments has introduced new security concerns that are not present in the IT domain or consumer IoT devices. Depending on the industrial process being controlled by the PLC, our attack can potentially cause catastrophic incidents or even loss of life. We verified these claims by performing a Stuxnet-style attack using a prototype implementation of this malware on a widely-used PLC model by exploiting zero-day vulnerabilities that we discovered during our research (CVE-2022-45137, CVE-2022-45138, CVE-2022-45139, and CVE-2022-45140). Our investigation reveals that every major PLC vendor (80% of global market share) produces a PLC that is vulnerable to our proposed attack vector. Lastly, we discuss potential countermeasures and mitigations.

View More Papers

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More

MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More