Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

ConcurORAM is a parallel, multi-client oblivious RAM (ORAM) that eliminates waiting for concurrent stateless clients and allows over-all throughput to scale gracefully, without requiring trusted third party components (proxies) or direct inter-client coordination. A key insight behind ConcurORAM is the fact that, during multi-client data access, only a subset of the concurrently-accessed server-hosted data structures require access privacy guarantees. Everything else can be safely implemented as oblivious data structures that are later synced securely and efficiently during an ORAM “eviction”.

Further, since a major contributor to latency is the eviction– in which client-resident data is reshuffled and reinserted back encrypted into the main server database – ConcurORAM also enables multiple concurrent clients to evict asynchronously, in parallel (without compromising consistency), and in the back-ground without having to block ongoing queries. As a result, throughput scales well with increasing number of concurrent clients and is not significantly impacted by evictions. For example, about 65 queries per second can be executed in parallel by 30 concurrent clients, a 2x speedup over the state-of-the-art. The query access time for individual clients increases by only 2x when compared to a single-client deployment.

View More Papers

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More

UWB with Pulse Reordering: Securing Ranging against Relay and...

Mridula Singh (ETH Zurich, Switzerland), Patrick Leu (ETH Zurich, Switzerland), Srdjan Capkun (ETH Zurich, Switzerland)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad...

Muhammad Ahmad Bashir (Northeastern University), Umar Farooq (LUMS Pakistan), Maryam Shahid (LUMS Pakistan), Muhammad Fareed Zaffar (LUMS Pakistan), Christo Wilson (Northeastern University)

Read More