Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

The InterPlanetary File System (IPFS) is currently the largest decentralized storage solution in operation, with thousands of active participants and millions of daily content transfers. IPFS is used as remote data storage for numerous blockchain-based smart contracts, Non-Fungible Tokens (NFT), and decentralized applications.

We present a content censorship attack that can be executed with minimal effort and cost, and that prevents the retrieval of any chosen content in the IPFS network. The attack exploits a conceptual issue in a core component of IPFS, the Kademlia Distributed Hash Table (DHT), which is used to resolve content IDs to peer addresses. We provide efficient detection and mitigation mechanisms for this vulnerability. Our mechanisms achieve a 99.6% detection rate and mitigate 100% of the detected attacks with minimal signaling and computational overhead. We followed responsible disclosure procedures, and our countermeasures are scheduled for deployment in the future versions of IPFS.

View More Papers

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More