Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

In a Cross-Origin State Inference (COSI) attack, an attacker convinces a victim into visiting an attack web page, which leverages the cross-origin interaction features of the victim’s web browser to infer the victim’s state at a target web site. Multiple instances of COSI attacks have been found in the past under different names such as login detection or access detection attacks. But, those attacks only consider two states (e.g., logged in or not) and focus on a specific browser leak method (or XS-Leak).

This work shows that mounting more complex COSI attacks such as deanonymizing the owner of an account, determining if the victim owns sensitive content, and determining the victim’s account type often requires considering more than two states. Furthermore, robust attacks require supporting a variety of browsers since the victim’s browser cannot be predicted apriori. To address these issues, we present a novel approach to identify and build complex COSI attacks that differentiate more than
two states and support multiple browsers by combining multiple attack vectors, possibly using different XS-Leaks. To enable our approach, we introduce the concept of a COSI attack class. We propose two novel techniques to generalize existing COSI attack instances into COSI attack classes and to discover new COSI attack classes. We systematically study existing attacks and apply our techniques to them, identifying 40 COSI attack classes. As part of this process, we discover a novel XS-Leak based on window.postMessage. We implement our approach into Basta-COSI, a tool to find COSI attacks in a target web site. We apply Basta-COSI to test four stand-alone web applications and 58 popular web sites, finding COSI attacks against each of them.

View More Papers

You Are What You Do: Hunting Stealthy Malware via...

Qi Wang (University of Illinois Urbana-Champaign), Wajih Ul Hassan (University of Illinois Urbana-Champaign), Ding Li (NEC Laboratories America, Inc.), Kangkook Jee (University of Texas at Dallas), Xiao Yu (NEC Laboratories America, Inc.), Kexuan Zou (University Of Illinois Urbana-Champaign), Junghwan Rhee (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Wei Cheng (NEC Laboratories America,…

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

Read More