Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Federated Learning (FL) is a promising approach enabling multiple clients to train Deep Neural Networks (DNNs) collaboratively without sharing their local training data. However, FL is susceptible to backdoor (or targeted poisoning) attacks. These attacks are initiated by malicious clients who seek to compromise the learning process by introducing specific behaviors into the learned model that can be triggered by carefully crafted inputs. Existing FL safeguards have various limitations: They are restricted to specific data distributions or reduce the global model accuracy due to excluding benign models or adding noise, are vulnerable to adaptive defense-aware adversaries, or require the server to access local models, allowing data inference attacks.

This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in FL and overcomes the deficiencies of existing techniques. It leverages clients' feedback on individual models, analyzes the behavior of neurons in hidden layers, and eliminates poisoned models through an iterative pruning scheme. CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback. The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios, including IID and non-IID data distributions. Additionally, CrowdGuard withstands adaptive adversaries while preserving the original performance of protected models. To ensure confidentiality, CrowdGuard uses a secure and privacy-preserving architecture leveraging Trusted Execution Environments (TEEs) on both client and server sides.

View More Papers

Facilitating Non-Intrusive In-Vivo Firmware Testing with Stateless Instrumentation

Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More

SyzBridge: Bridging the Gap in Exploitability Assessment of Linux...

Xiaochen Zou (UC Riverside), Yu Hao (UC Riverside), Zheng Zhang (UC RIverside), Juefei Pu (UC RIverside), Weiteng Chen (Microsoft Research, Redmond), Zhiyun Qian (UC Riverside)

Read More

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More