Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Wireless technologies like Bluetooth Low Energy (BLE) and Wi-Fi are essential to the Internet of Things (IoT), facilitating seamless device communication without physical connections. However, this convenience comes at a cost—exposed data exchanges that are susceptible to observation by attackers, leading to serious security and privacy threats such as device tracking. Although protocol designers have traditionally relied on strategies like address and identity randomization as a countermeasure, our research reveals that these attacks remain a significant threat due to a historically overlooked, fundamental flaw in exclusive-use wireless communication. We define _exclusive-use_ as a scenario where devices are designed to provide functionality solely to an
associated or paired device. The unique communication patterns inherent in these relationships create an observable boolean side-channel that attackers can exploit to discover whether two devices “trust” each other. This information leak allows for the deanonymization of devices, enabling tracking even in the presence of modern countermeasures. We introduce our tracking attacks as _IDBleed_ and demonstrate that BLE and Wi-Fi protocols that support confidentiality, integrity, and authentication remain vulnerable to deanonymization due to this fundamental flaw in exclusive-use communication patterns. Finally, we propose and quantitatively evaluate a generalized, privacy-preserving mitigation we call _Anonymization Layer_ to find a negligible 2% approximate overhead in performance and power consumption on tested smartphones and PCs.

View More Papers

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Read More

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More