Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Model pruning is a technique for compressing deep learning models, and using an iterative way to prune the model can achieve better compression effects with lower utility loss. However, our analysis reveals that iterative pruning significantly increases model memorization, making the pruned models more vulnerable to membership inference attacks (MIAs). Unfortunately, the vast majority of existing defenses against MIAs are designed for original and unpruned models. In this paper, we propose a new framework WeMem to weaken memorization in the iterative pruning process. Specifically, our analysis identifies two important factors that increase memorization in iterative pruning, namely data reuse and inherent memorability. We consider the individual and combined impacts of both factors, forming three scenarios that lead to increased memorization in iteratively pruned models. We design three defense primitives based on these factors' characteristics. By combining these primitives, we propose methods tailored to each scenario to weaken memorization effectively. Comprehensive experiments under ten adaptive MIAs demonstrate the effectiveness of the proposed defenses. Moreover, our defenses outperform five existing defenses in terms of privacy-utility tradeoff and efficiency. Additionally, we enhance the proposed defenses to automatically adjust settings for optimal defense, improving their practicability.

View More Papers

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

Impact Tracing: Identifying the Culprit of Misinformation in Encrypted...

Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Read More

Home Shield IoT Traffic Analyzer: A Comprehensive Analysis of...

Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Read More