Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

The potential misuse of ChatGPT and other Large Language Models (LLMs) has raised concerns regarding the dissemination of false information, plagiarism, academic dishonesty, and fraudulent activities. Consequently, distinguishing between AI-generated and human-generated content has emerged as an intriguing research topic. However, current text detection methods lack precision and are often restricted to specific tasks or domains, making them inadequate for identifying content generated by ChatGPT. In this paper, we propose an effective ChatGPT detector named DEMASQ, which accurately identifies ChatGPT-generated content. Our method addresses two critical factors: (i) the distinct biases in text composition observed in human and machine-generated content and (ii) the alterations made by humans to evade previous detection methods. DEMASQ is an energy-based detection model that incorporates novel aspects, such as (i) optimization inspired by the Doppler effect to capture the interdependence between input text embeddings and output labels, and (ii) the use of explainable AI techniques to generate diverse perturbations. To evaluate our detector, we create a benchmark dataset comprising a mixture of prompts from both ChatGPT and humans, encompassing domains such as medical, open Q&A, finance, wiki, and Reddit. Our evaluation demonstrates that DEMASQ achieves high accuracy in identifying content generated by ChatGPT.

View More Papers

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

Cyclops: Binding a Vehicle’s Digital Identity to its Physical...

Lewis William Koplon, Ameer Ghasem Nessaee, Alex Choi (University of Arizona, Tucson), Andres Mentoza (New Mexico State University, Las Cruces), Michael Villasana, Loukas Lazos, Ming Li (University of Arizona, Tucson)

Read More

A Preliminary Study on Using Large Language Models in...

Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More