Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Nowadays, it is common to release audio content to the public, for social sharing or commercial purposes. However, with the rise of voice cloning technology, attackers have the potential to easily impersonate a specific person by utilizing his publicly released audio without any permission. Therefore, it becomes significant to detect any potential misuse of the released audio content and protect its timbre from being impersonated.

To this end, we introduce a novel concept, "Timbre Watermarking", which embeds watermark information into the target individual's speech, eventually defeating the voice cloning attacks. However, there are two challenges: 1) robustness: the attacker can remove the watermark with common speech preprocessing before launching voice cloning attacks; 2) generalization: there are a variety of voice cloning approaches for the attacker to choose, making it hard to build a general defense against all of them.

To address these challenges, we design an end-to-end voice cloning-resistant detection framework. The core idea of our solution is to embed the watermark into the frequency domain, which is inherently robust against common data processing methods. A repeated embedding strategy is adopted to further enhance the robustness. To acquire generalization across different voice cloning attacks, we modulate their shared process and integrate it into our framework as a distortion layer. Experiments demonstrate that the proposed timbre watermarking can defend against different voice cloning attacks, exhibit strong resistance against various adaptive attacks (e.g., reconstruction-based removal attacks, watermark overwriting attacks), and achieve practicality in real-world services such as PaddleSpeech, Voice-Cloning-App, and so-vits-svc. In addition, ablation studies are also conducted to verify the effectiveness of our design. Some audio samples are available at https://timbrewatermarking.github.io/samples.

View More Papers

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

HEIR: A Unified Representation for Cross-Scheme Compilation of Fully...

Song Bian (Beihang University), Zian Zhao (Beihang University), Zhou Zhang (Beihang University), Ran Mao (Beihang University), Kohei Suenaga (Kyoto University), Yier Jin (University of Science and Technology of China), Zhenyu Guan (Beihang University), Jianwei Liu (Beihang University)

Read More

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More