Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Networks of autonomous collaborative embedded systems are emerging in many application domains such as vehicular ad-hoc networks, robotic factory workers, search/rescue robots, delivery and search drones. To perform their collaborative tasks the involved devices exchange various types of information such as sensor data, status information, and commands. For the correct operation of these complex systems each device must be able to verify that the data coming from other devices is correct and has not been maliciously altered.

In this paper, we present DIAT – a novel approach that allows to verify the correctness of data by attesting the correct generation as well as processing of data using control-flow attestation. DIAT enables devices in autonomous collaborative networks to securely and efficiently interact, relying on a minimal TCB. It ensures that the data sent from one device to another device is not maliciously changed, neither during transport nor during generation or processing on the originating device. Data exchanged between devices in the network is therefore authenticated along with a proof of integrity of all software involved in its generation and processing. To enable this, the embedded devices’ software is decomposed into simple interacting modules reducing the amount and complexity of software that needs to be attested, i.e., only those modules that process the data are relevant. As proof-of-concept we implemented and evaluated our scheme DIAT on a state-of-the-art flight controller for drones. Furthermore, we evaluated our scheme in a simulation environment to demonstrate its scalability for large-scale systems.

View More Papers

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

Private Continual Release of Real-Valued Data Streams

Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

Read More

ConcurORAM: High-Throughput Stateless Parallel Multi-Client ORAM

Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

Read More