Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Online guessing attacks against password servers can be hard to address. Approaches that throttle or block repeated guesses on an account (e.g., three strikes type lockout rules)
can be effective against depth-first attacks, but are of little help against breadth-first attacks that spread guesses very widely. At large providers with tens or hundreds of millions
of accounts breadth-first attacks offer a way to send millions or even billions of guesses without ever triggering the depth-first defenses.
The absence of labels and non-stationarity of attack traffic make it challenging to apply machine learning techniques.

We show how to accurately estimate the odds that an observation $x$ associated with a request is malicious. Our main assumptions are that successful malicious logins are a small
fraction of the total, and that the distribution of $x$ in the legitimate traffic is stationary, or very-slowly varying.
From these we show how we can estimate the ratio of bad-to-good traffic among any set of requests; how we can then identify subsets of the request data that contain least (or even no) attack traffic; how
these least-attacked subsets allow us to estimate the distribution of values of $x$ over the legitimate data, and hence calculate the odds ratio.
A sensitivity analysis shows that even when we fail to identify a subset with little attack traffic our odds ratio estimates are very robust.

View More Papers

Data Oblivious ISA Extensions for Side Channel-Resistant and High...

Jiyong Yu (UIUC), Lucas Hsiung (UIUC), Mohamad El'Hajj (UIUC), Christopher W. Fletcher (UIUC)

Read More

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via...

A. Theodore Markettos (University of Cambridge), Colin Rothwell (University of Cambridge), Brett F. Gutstein (Rice University), Allison Pearce (University of Cambridge), Peter G. Neumann (SRI International), Simon W. Moore (University of Cambridge), Robert N. M. Watson (University of Cambridge)

Read More

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad...

Muhammad Ahmad Bashir (Northeastern University), Umar Farooq (LUMS Pakistan), Maryam Shahid (LUMS Pakistan), Muhammad Fareed Zaffar (LUMS Pakistan), Christo Wilson (Northeastern University)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More